1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
//! This module defines a set of traits that can be used to plug different measurements (eg. //! Unix's Processor Time, CPU or GPU performance counters, etc.) into Criterion.rs. It also //! includes the [WallTime](struct.WallTime.html) struct which defines the default wall-clock time //! measurement. use crate::format::short; use crate::DurationExt; use crate::Throughput; use std::time::{Duration, Instant}; /// Trait providing functions to format measured values to string so that they can be displayed on /// the command line or in the reports. The functions of this trait take measured values in f64 /// form; implementors can assume that the values are of the same scale as those produced by the /// associated [MeasuredValue](trait.MeasuredValue.html) (eg. if your measurement produces values in /// nanoseconds, the values passed to the formatter will be in nanoseconds). /// /// Implementors are encouraged to format the values in a way that is intuitive for humans and /// uses the SI prefix system. For example, the format used by [WallTime](struct.WallTime.html) /// can display the value in units ranging from picoseconds to seconds depending on the magnitude /// of the elapsed time in nanoseconds. pub trait ValueFormatter { /// Format the value (with appropriate unit) and return it as a string. fn format_value(&self, value: f64) -> String { let mut values = [value]; let unit = self.scale_values(value, &mut values); format!("{:>6} {}", short(values[0]), unit) } /// Format the value as a throughput measurement. The value represents the measurement value; /// the implementor will have to calculate bytes per second, iterations per cycle, etc. fn format_throughput(&self, throughput: &Throughput, value: f64) -> String { let mut values = [value]; let unit = self.scale_throughputs(value, throughput, &mut values); format!("{:>6} {}", short(values[0]), unit) } /// Scale the given values to some appropriate unit and return the unit string. /// /// The given typical value should be used to choose the unit. This function may be called /// multiple times with different datasets; the typical value will remain the same to ensure /// that the units remain consistent within a graph. The typical value will not be NaN. /// Values will not contain NaN as input, and the transformed values must not contain NaN. fn scale_values(&self, typical_value: f64, values: &mut [f64]) -> &'static str; /// Convert the given measured values into throughput numbers based on the given throughput /// value, scale them to some appropriate unit, and return the unit string. /// /// The given typical value should be used to choose the unit. This function may be called /// multiple times with different datasets; the typical value will remain the same to ensure /// that the units remain consistent within a graph. The typical value will not be NaN. /// Values will not contain NaN as input, and the transformed values must not contain NaN. fn scale_throughputs( &self, typical_value: f64, throughput: &Throughput, values: &mut [f64], ) -> &'static str; /// Scale the values and return a unit string designed for machines. /// /// For example, this is used for the CSV file output. Implementations should modify the given /// values slice to apply the desired scaling (if any) and return a string representing the unit /// the modified values are in. fn scale_for_machines(&self, values: &mut [f64]) -> &'static str; } /// Trait for all types which define something Criterion.rs can measure. The only measurement /// currently provided is [WallTime](struct.WallTime.html), but third party crates or benchmarks /// may define more. /// /// This trait defines two core methods, `start` and `end`. `start` is called at the beginning of /// a measurement to produce some intermediate value (for example, the wall-clock time at the start /// of that set of iterations) and `end` is called at the end of the measurement with the value /// returned by `start`. /// pub trait Measurement { /// This type represents an intermediate value for the measurements. It will be produced by the /// start function and passed to the end function. An example might be the wall-clock time as /// of the `start` call. type Intermediate; /// This type is the measured value. An example might be the elapsed wall-clock time between the /// `start` and `end` calls. type Value; /// Criterion.rs will call this before iterating the benchmark. fn start(&self) -> Self::Intermediate; /// Criterion.rs will call this after iterating the benchmark to get the measured value. fn end(&self, i: Self::Intermediate) -> Self::Value; /// Combine two values. Criterion.rs sometimes needs to perform measurements in multiple batches /// of iterations, so the value from one batch must be added to the sum of the previous batches. fn add(&self, v1: &Self::Value, v2: &Self::Value) -> Self::Value; /// Return a "zero" value for the Value type which can be added to another value. fn zero(&self) -> Self::Value; /// Converts the measured value to f64 so that it can be used in statistical analysis. fn to_f64(&self, value: &Self::Value) -> f64; /// Return a trait-object reference to the value formatter for this measurement. fn formatter(&self) -> &dyn ValueFormatter; } pub(crate) struct DurationFormatter; impl DurationFormatter { fn bytes_per_second(&self, bytes: f64, typical: f64, values: &mut [f64]) -> &'static str { let bytes_per_second = bytes * (1e9 / typical); let (denominator, unit) = if bytes_per_second < 1024.0 { (1.0, " B/s") } else if bytes_per_second < 1024.0 * 1024.0 { (1024.0, "KiB/s") } else if bytes_per_second < 1024.0 * 1024.0 * 1024.0 { (1024.0 * 1024.0, "MiB/s") } else { (1024.0 * 1024.0 * 1024.0, "GiB/s") }; for val in values { let bytes_per_second = bytes * (1e9 / *val); *val = bytes_per_second / denominator; } unit } fn elements_per_second(&self, elems: f64, typical: f64, values: &mut [f64]) -> &'static str { let elems_per_second = elems * (1e9 / typical); let (denominator, unit) = if elems_per_second < 1000.0 { (1.0, " elem/s") } else if elems_per_second < 1000.0 * 1000.0 { (1000.0, "Kelem/s") } else if elems_per_second < 1000.0 * 1000.0 * 1000.0 { (1000.0 * 1000.0, "Melem/s") } else { (1000.0 * 1000.0 * 1000.0, "Gelem/s") }; for val in values { let elems_per_second = elems * (1e9 / *val); *val = elems_per_second / denominator; } unit } } impl ValueFormatter for DurationFormatter { fn scale_throughputs( &self, typical: f64, throughput: &Throughput, values: &mut [f64], ) -> &'static str { match *throughput { Throughput::Bytes(bytes) => self.bytes_per_second(bytes as f64, typical, values), Throughput::Elements(elems) => self.elements_per_second(elems as f64, typical, values), } } fn scale_values(&self, ns: f64, values: &mut [f64]) -> &'static str { let (factor, unit) = if ns < 10f64.powi(0) { (10f64.powi(3), "ps") } else if ns < 10f64.powi(3) { (10f64.powi(0), "ns") } else if ns < 10f64.powi(6) { (10f64.powi(-3), "us") } else if ns < 10f64.powi(9) { (10f64.powi(-6), "ms") } else { (10f64.powi(-9), "s") }; for val in values { *val *= factor; } unit } fn scale_for_machines(&self, _values: &mut [f64]) -> &'static str { // no scaling is needed "ns" } } /// `WallTime` is the default measurement in Criterion.rs. It measures the elapsed time from the /// beginning of a series of iterations to the end. pub struct WallTime; impl Measurement for WallTime { type Intermediate = Instant; type Value = Duration; fn start(&self) -> Self::Intermediate { Instant::now() } fn end(&self, i: Self::Intermediate) -> Self::Value { i.elapsed() } fn add(&self, v1: &Self::Value, v2: &Self::Value) -> Self::Value { *v1 + *v2 } fn zero(&self) -> Self::Value { Duration::from_secs(0) } fn to_f64(&self, val: &Self::Value) -> f64 { val.to_nanos() as f64 } fn formatter(&self) -> &dyn ValueFormatter { &DurationFormatter } }