1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
use crate::error::{CudaResult, DropResult, ToResult};
use crate::memory::device::AsyncCopyDestination;
use crate::memory::device::CopyDestination;
use crate::memory::malloc::{cuda_free, cuda_malloc};
use crate::memory::DeviceCopy;
use crate::memory::DevicePointer;
use crate::stream::Stream;
use cuda_sys::cuda;
use std::fmt::{self, Pointer};
use std::mem;

use std::os::raw::c_void;

/// A pointer type for heap-allocation in CUDA device memory.
///
/// See the [`module-level documentation`](../memory/index.html) for more information on device memory.
#[derive(Debug)]
pub struct DeviceBox<T> {
    ptr: DevicePointer<T>,
}
impl<T: DeviceCopy> DeviceBox<T> {
    /// Allocate device memory and place val into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Errors
    ///
    /// If a CUDA error occurs, return the error.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let five = DeviceBox::new(&5).unwrap();
    /// ```
    pub fn new(val: &T) -> CudaResult<Self> {
        let mut dev_box = unsafe { DeviceBox::uninitialized()? };
        dev_box.copy_from(val)?;
        Ok(dev_box)
    }
}
impl<T> DeviceBox<T> {
    /// Allocate device memory, but do not initialize it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Safety
    ///
    /// Since the backing memory is not initialized, this function is not safe. The caller must
    /// ensure that the backing memory is set to a valid value before it is read, else undefined
    /// behavior may occur.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let mut five = unsafe { DeviceBox::uninitialized().unwrap() };
    /// five.copy_from(&5u64).unwrap();
    /// ```
    pub unsafe fn uninitialized() -> CudaResult<Self> {
        if mem::size_of::<T>() == 0 {
            Ok(DeviceBox {
                ptr: DevicePointer::null(),
            })
        } else {
            let ptr = cuda_malloc(1)?;
            Ok(DeviceBox { ptr })
        }
    }

    /// Allocate device memory and fill it with zeroes (`0u8`).
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Safety
    ///
    /// The backing memory is zeroed, which may not be a valid bit-pattern for type `T`. The caller
    /// must ensure either that all-zeroes is a valid bit-pattern for type `T` or that the backing
    /// memory is set to a valid value before it is read.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let mut zero = unsafe { DeviceBox::zeroed().unwrap() };
    /// let mut value = 5u64;
    /// zero.copy_to(&mut value).unwrap();
    /// assert_eq!(0, value);
    /// ```
    pub unsafe fn zeroed() -> CudaResult<Self> {
        let mut new_box = DeviceBox::uninitialized()?;
        if mem::size_of::<T>() != 0 {
            cuda::cuMemsetD8_v2(
                new_box.as_device_ptr().as_raw_mut() as u64,
                0,
                mem::size_of::<T>(),
            )
            .to_result()?;
        }
        Ok(new_box)
    }

    /// Constructs a DeviceBox from a raw pointer.
    ///
    /// After calling this function, the raw pointer and the memory it points to is owned by the
    /// DeviceBox. The DeviceBox destructor will free the allocated memory, but will not call the destructor
    /// of `T`. This function may accept any pointer produced by the `cuMemAllocManaged` CUDA API
    /// call.
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory problems. For example, a
    /// double free may occur if this function is called twice on the same pointer, or a segfault
    /// may occur if the pointer is not one returned by the appropriate API call.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let x = DeviceBox::new(&5).unwrap();
    /// let ptr = DeviceBox::into_device(x).as_raw_mut();
    /// let x = unsafe { DeviceBox::from_raw(ptr) };
    /// ```
    pub unsafe fn from_raw(ptr: *mut T) -> Self {
        DeviceBox {
            ptr: DevicePointer::wrap(ptr),
        }
    }

    /// Constructs a DeviceBox from a DevicePointer.
    ///
    /// After calling this function, the pointer and the memory it points to is owned by the
    /// DeviceBox. The DeviceBox destructor will free the allocated memory, but will not call the destructor
    /// of `T`. This function may accept any pointer produced by the `cuMemAllocManaged` CUDA API
    /// call, such as one taken from `DeviceBox::into_device`.
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory problems. For example, a
    /// double free may occur if this function is called twice on the same pointer, or a segfault
    /// may occur if the pointer is not one returned by the appropriate API call.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let x = DeviceBox::new(&5).unwrap();
    /// let ptr = DeviceBox::into_device(x);
    /// let x = unsafe { DeviceBox::from_device(ptr) };
    /// ```
    pub unsafe fn from_device(ptr: DevicePointer<T>) -> Self {
        DeviceBox { ptr }
    }

    /// Consumes the DeviceBox, returning the wrapped DevicePointer.
    ///
    /// After calling this function, the caller is responsible for the memory previously managed by
    /// the DeviceBox. In particular, the caller should properly destroy T and deallocate the memory.
    /// The easiest way to do so is to create a new DeviceBox using the `DeviceBox::from_device` function.
    ///
    /// Note: This is an associated function, which means that you have to all it as
    /// `DeviceBox::into_device(b)` instead of `b.into_device()` This is so that there is no conflict with
    /// a method on the inner type.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let x = DeviceBox::new(&5).unwrap();
    /// let ptr = DeviceBox::into_device(x);
    /// # unsafe { DeviceBox::from_device(ptr) };
    /// ```
    #[allow(clippy::wrong_self_convention)]
    pub fn into_device(mut b: DeviceBox<T>) -> DevicePointer<T> {
        let ptr = mem::replace(&mut b.ptr, DevicePointer::null());
        mem::forget(b);
        ptr
    }

    /// Returns the contained device pointer without consuming the box.
    ///
    /// This is useful for passing the box to a kernel launch.
    ///
    /// # Examples
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let mut x = DeviceBox::new(&5).unwrap();
    /// let ptr = x.as_device_ptr();
    /// println!("{:p}", ptr);
    /// ```
    pub fn as_device_ptr(&mut self) -> DevicePointer<T> {
        self.ptr
    }

    /// Destroy a `DeviceBox`, returning an error.
    ///
    /// Deallocating device memory can return errors from previous asynchronous work. This function
    /// destroys the given box and returns the error and the un-destroyed box on failure.
    ///
    /// # Example
    ///
    /// ```
    /// # let _context = rustacuda::quick_init().unwrap();
    /// use rustacuda::memory::*;
    /// let x = DeviceBox::new(&5).unwrap();
    /// match DeviceBox::drop(x) {
    ///     Ok(()) => println!("Successfully destroyed"),
    ///     Err((e, dev_box)) => {
    ///         println!("Failed to destroy box: {:?}", e);
    ///         // Do something with dev_box
    ///     },
    /// }
    /// ```
    pub fn drop(mut dev_box: DeviceBox<T>) -> DropResult<DeviceBox<T>> {
        if dev_box.ptr.is_null() {
            return Ok(());
        }

        let ptr = mem::replace(&mut dev_box.ptr, DevicePointer::null());
        unsafe {
            match cuda_free(ptr) {
                Ok(()) => {
                    mem::forget(dev_box);
                    Ok(())
                }
                Err(e) => Err((e, DeviceBox { ptr })),
            }
        }
    }
}
impl<T> Drop for DeviceBox<T> {
    fn drop(&mut self) {
        if self.ptr.is_null() {
            return;
        }

        let ptr = mem::replace(&mut self.ptr, DevicePointer::null());
        // No choice but to panic if this fails.
        unsafe {
            cuda_free(ptr).expect("Failed to deallocate CUDA memory.");
        }
    }
}
impl<T> Pointer for DeviceBox<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr, f)
    }
}
impl<T> crate::private::Sealed for DeviceBox<T> {}
impl<T: DeviceCopy> CopyDestination<T> for DeviceBox<T> {
    fn copy_from(&mut self, val: &T) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            unsafe {
                cuda::cuMemcpyHtoD_v2(
                    self.ptr.as_raw_mut() as u64,
                    val as *const T as *const c_void,
                    size,
                )
                .to_result()?
            }
        }
        Ok(())
    }

    fn copy_to(&self, val: &mut T) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            unsafe {
                cuda::cuMemcpyDtoH_v2(
                    val as *const T as *mut c_void,
                    self.ptr.as_raw() as u64,
                    size,
                )
                .to_result()?
            }
        }
        Ok(())
    }
}
impl<T: DeviceCopy> CopyDestination<DeviceBox<T>> for DeviceBox<T> {
    fn copy_from(&mut self, val: &DeviceBox<T>) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            unsafe {
                cuda::cuMemcpyDtoD_v2(self.ptr.as_raw_mut() as u64, val.ptr.as_raw() as u64, size)
                    .to_result()?
            }
        }
        Ok(())
    }

    fn copy_to(&self, val: &mut DeviceBox<T>) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            unsafe {
                cuda::cuMemcpyDtoD_v2(val.ptr.as_raw_mut() as u64, self.ptr.as_raw() as u64, size)
                    .to_result()?
            }
        }
        Ok(())
    }
}
impl<T: DeviceCopy> AsyncCopyDestination<DeviceBox<T>> for DeviceBox<T> {
    unsafe fn async_copy_from(&mut self, val: &DeviceBox<T>, stream: &Stream) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            cuda::cuMemcpyDtoDAsync_v2(
                self.ptr.as_raw_mut() as u64,
                val.ptr.as_raw() as u64,
                size,
                stream.as_inner(),
            )
            .to_result()?
        }
        Ok(())
    }

    unsafe fn async_copy_to(&self, val: &mut DeviceBox<T>, stream: &Stream) -> CudaResult<()> {
        let size = mem::size_of::<T>();
        if size != 0 {
            cuda::cuMemcpyDtoDAsync_v2(
                val.ptr.as_raw_mut() as u64,
                self.ptr.as_raw() as u64,
                size,
                stream.as_inner(),
            )
            .to_result()?
        }
        Ok(())
    }
}

#[cfg(test)]
mod test_device_box {
    use super::*;

    #[derive(Clone, Debug)]
    struct ZeroSizedType;
    unsafe impl DeviceCopy for ZeroSizedType {}

    #[test]
    fn test_allocate_and_free_device_box() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&5u64).unwrap();
        drop(x);
    }

    #[test]
    fn test_device_box_allocates_for_non_zst() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&5u64).unwrap();
        let ptr = DeviceBox::into_device(x);
        assert!(!ptr.is_null());
        let _ = unsafe { DeviceBox::from_device(ptr) };
    }

    #[test]
    fn test_device_box_doesnt_allocate_for_zero_sized_type() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&ZeroSizedType).unwrap();
        let ptr = DeviceBox::into_device(x);
        assert!(ptr.is_null());
        let _ = unsafe { DeviceBox::from_device(ptr) };
    }

    #[test]
    fn test_into_from_device() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&5u64).unwrap();
        let ptr = DeviceBox::into_device(x);
        let _ = unsafe { DeviceBox::from_device(ptr) };
    }

    #[test]
    fn test_copy_host_to_device() {
        let _context = crate::quick_init().unwrap();
        let y = 5u64;
        let mut x = DeviceBox::new(&0u64).unwrap();
        x.copy_from(&y).unwrap();
        let mut z = 10u64;
        x.copy_to(&mut z).unwrap();
        assert_eq!(y, z);
    }

    #[test]
    fn test_copy_device_to_host() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&5u64).unwrap();
        let mut y = 0u64;
        x.copy_to(&mut y).unwrap();
        assert_eq!(5, y);
    }

    #[test]
    fn test_copy_device_to_device() {
        let _context = crate::quick_init().unwrap();
        let x = DeviceBox::new(&5u64).unwrap();
        let mut y = DeviceBox::new(&0u64).unwrap();
        let mut z = DeviceBox::new(&0u64).unwrap();
        x.copy_to(&mut y).unwrap();
        z.copy_from(&y).unwrap();

        let mut h = 0u64;
        z.copy_to(&mut h).unwrap();
        assert_eq!(5, h);
    }

    #[test]
    fn test_device_pointer_implements_traits_safely() {
        let _context = crate::quick_init().unwrap();
        let mut x = DeviceBox::new(&5u64).unwrap();
        let mut y = DeviceBox::new(&0u64).unwrap();

        // If the impls dereference the pointer, this should segfault.
        let _ = Ord::cmp(&x.as_device_ptr(), &y.as_device_ptr());
        let _ = PartialOrd::partial_cmp(&x.as_device_ptr(), &y.as_device_ptr());
        let _ = PartialEq::eq(&x.as_device_ptr(), &y.as_device_ptr());

        let mut hasher = std::collections::hash_map::DefaultHasher::new();
        std::hash::Hash::hash(&x.as_device_ptr(), &mut hasher);

        let _ = format!("{:?}", x.as_device_ptr());
        let _ = format!("{:p}", x.as_device_ptr());
    }
}