1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! This crate provides a safe, user-friendly wrapper around the CUDA Driver API.
//!
//! # CUDA Terminology:
//!
//! ## Devices and Hosts:
//!
//! This crate and its documentation uses the terms "device" and "host" frequently, so it's worth
//! explaining them in more detail. A device refers to a CUDA-capable GPU or similar device and its
//! associated external memory space. The host is the CPU and its associated memory space. Data
//! must be transferred from host memory to device memory before the device can use it for
//! computations, and the results must then be transferred back to host memory.
//!
//! ## Contexts, Modules, Streams and Functions:
//!
//! A CUDA context is akin to a process on the host - it contains all of the state for working with
//! a device, all memory allocations, etc. Each context is associated with a single device.
//!
//! A Module is similar to a shared-object library - it is a piece of compiled code which exports
//! functions and global values. Functions can be loaded from modules and launched on a device as
//! one might load a function from a shared-object file and call it. Functions are also known as
//! kernels and the two terms will be used interchangeably.
//!
//! A Stream is akin to a thread - asynchronous work such as kernel execution can be queued into a
//! stream. Work within a single stream will execute sequentially in the order that it was
//! submitted, and may interleave with work from other streams.
//!
//! ## Grids, Blocks and Threads:
//!
//! CUDA devices typically execute kernel functions on many threads in parallel. These threads can
//! be grouped into thread blocks, which share an area of fast hardware memory known as shared
//! memory. Thread blocks can be one-, two-, or three-dimensional, which is helpful when working
//! with multi-dimensional data such as images. Thread blocks are then grouped into grids, which
//! can also be one-, two-, or three-dimensional.
//!
//! CUDA devices often contain multiple separate processors. Each processor is capable of excuting
//! many threads simultaneously, but they must be from the same thread block. Thus, it is important
//! to ensure that the grid size is large enough to provide work for all processors. On the other
//! hand, if the thread blocks are too small each processor will be under-utilized and the
//! code will be unable to make effective use of shared memory.
//!
//! # Usage:
//!
//! Before using RustaCUDA, you must install the CUDA development libraries for your system. Version
//! 8.0 or newer is required. You must also have a CUDA-capable GPU installed with the appropriate
//! drivers.
//!
//! Add the following to your `Cargo.toml`:
//!
//! ```text
//! [dependencies]
//! rustacuda = "0.1"
//! rustacuda_derive = "0.1"
//! rustacuda_core = "0.1"
//! ```
//!
//! And this to your crate root:
//!
//! ```text
//! #[macro_use]
//! extern crate rustacuda;
//!
//! #[macro_use]
//! extern crate rustacuda_derive;
//!
//! extern crate rustacuda_core;
//! ```
//!
//! Finally, set the `CUDA_LIBRARY_PATH` environment variable to the location of your CUDA libraries.
//! For example, on Windows (MINGW):
//!
//! ```text
//! export CUDA_LIBRARY_PATH="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\lib\x64"
//! ```
//!
//! # Examples
//!
//! ## Adding two numbers on the device:
//!
//! First, download the `resources/add.ptx` file from the RustaCUDA repository and place it in
//! the resources directory for your application.
//!
//! ```
//! #[macro_use]
//! extern crate rustacuda;
//! extern crate rustacuda_core;
//!
//! use rustacuda::prelude::*;
//! use rustacuda::memory::DeviceBox;
//! use std::error::Error;
//! use std::ffi::CString;
//!
//! fn main() -> Result<(), Box<dyn Error>> {
//!     // Initialize the CUDA API
//!     rustacuda::init(CudaFlags::empty())?;
//!     
//!     // Get the first device
//!     let device = Device::get_device(0)?;
//!
//!     // Create a context associated to this device
//!     let context = Context::create_and_push(
//!         ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO, device)?;
//!
//!     // Load the module containing the function we want to call
//!     let module_data = CString::new(include_str!("../resources/add.ptx"))?;
//!     let module = Module::load_from_string(&module_data)?;
//!
//!     // Create a stream to submit work to
//!     let stream = Stream::new(StreamFlags::NON_BLOCKING, None)?;
//!
//!     // Allocate space on the device and copy numbers to it.
//!     let mut x = DeviceBox::new(&10.0f32)?;
//!     let mut y = DeviceBox::new(&20.0f32)?;
//!     let mut result = DeviceBox::new(&0.0f32)?;
//!
//!     // Launching kernels is unsafe since Rust can't enforce safety - think of kernel launches
//!     // as a foreign-function call. In this case, it is - this kernel is written in CUDA C.
//!     unsafe {
//!         // Launch the `sum` function with one block containing one thread on the given stream.
//!         launch!(module.sum<<<1, 1, 0, stream>>>(
//!             x.as_device_ptr(),
//!             y.as_device_ptr(),
//!             result.as_device_ptr(),
//!             1 // Length
//!         ))?;
//!     }
//!
//!     // The kernel launch is asynchronous, so we wait for the kernel to finish executing
//!     stream.synchronize()?;
//!
//!     // Copy the result back to the host
//!     let mut result_host = 0.0f32;
//!     result.copy_to(&mut result_host)?;
//!     
//!     println!("Sum is {}", result_host);
//! #   assert_eq!(30, result_host as u32);
//!
//!     Ok(())
//! }
//! ```

#![warn(
    missing_docs,
    missing_debug_implementations,
    unused_import_braces,
    unused_results,
    unused_qualifications
)]
// TODO: Add the missing_doc_code_examples warning, switch these to Deny later.

// Allow clippy lints
#![allow(unknown_lints, clippy::new_ret_no_self)]

#[macro_use]
extern crate bitflags;
extern crate cuda_sys;
extern crate rustacuda_core;

#[allow(unused_imports, clippy::useless_attribute)]
#[macro_use]
extern crate rustacuda_derive;
#[doc(hidden)]
pub use rustacuda_derive::*;

pub mod context;
pub mod device;
pub mod error;
pub mod event;
pub mod function;
pub mod memory;
pub mod module;
pub mod prelude;
pub mod stream;

mod derive_compile_fail;

use crate::context::{Context, ContextFlags};
use crate::device::Device;
use crate::error::{CudaResult, ToResult};
use cuda_sys::cuda::{cuDriverGetVersion, cuInit};

bitflags! {
    /// Bit flags for initializing the CUDA driver. Currently, no flags are defined,
    /// so `CudaFlags::empty()` is the only valid value.
    pub struct CudaFlags: u32 {
        // We need to give bitflags at least one constant.
        #[doc(hidden)]
        const _ZERO = 0;
    }
}

/// Initialize the CUDA Driver API.
///
/// This must be called before any other RustaCUDA (or CUDA) function is called. Typically, this
/// should be at the start of your program. All other functions will fail unless the API is
/// initialized first.
///
/// The `flags` parameter is used to configure the CUDA API. Currently no flags are defined, so
/// it must be `CudaFlags::empty()`.
pub fn init(flags: CudaFlags) -> CudaResult<()> {
    unsafe { cuInit(flags.bits()).to_result() }
}

/// Shortcut for initializing the CUDA Driver API and creating a CUDA context with default settings
/// for the first device.
///
/// This is useful for testing or just setting up a basic CUDA context quickly. Users with more
/// complex needs (multiple devices, custom flags, etc.) should use `init` and create their own
/// context.
pub fn quick_init() -> CudaResult<Context> {
    init(CudaFlags::empty())?;
    let device = Device::get_device(0)?;
    Context::create_and_push(ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO, device)
}

/// Struct representing the CUDA API version number.
#[derive(Debug, Hash, Eq, PartialEq, Ord, PartialOrd, Copy, Clone)]
pub struct CudaApiVersion {
    version: i32,
}
impl CudaApiVersion {
    /// Returns the latest CUDA version supported by the CUDA driver.
    pub fn get() -> CudaResult<CudaApiVersion> {
        unsafe {
            let mut version: i32 = 0;
            cuDriverGetVersion(&mut version as *mut i32).to_result()?;
            Ok(CudaApiVersion { version })
        }
    }

    /// Return the major version number - eg. the 9 in version 9.2
    #[inline]
    pub fn major(self) -> i32 {
        self.version / 1000
    }

    /// Return the minor version number - eg. the 2 in version 9.2
    #[inline]
    pub fn minor(self) -> i32 {
        (self.version % 1000) / 10
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_api_version() {
        let version = CudaApiVersion { version: 9020 };
        assert_eq!(version.major(), 9);
        assert_eq!(version.minor(), 2);
    }

    #[test]
    fn test_init_twice() {
        init(CudaFlags::empty()).unwrap();
        init(CudaFlags::empty()).unwrap();
    }
}

// Fake module with a private trait used to prevent outside code from implementing certain traits.
pub(crate) mod private {
    pub trait Sealed {}
}