1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
//! This crate provides a safe, user-friendly wrapper around the CUDA Driver API. //! //! # CUDA Terminology: //! //! ## Devices and Hosts: //! //! This crate and its documentation uses the terms "device" and "host" frequently, so it's worth //! explaining them in more detail. A device refers to a CUDA-capable GPU or similar device and its //! associated external memory space. The host is the CPU and its associated memory space. Data //! must be transferred from host memory to device memory before the device can use it for //! computations, and the results must then be transferred back to host memory. //! //! ## Contexts, Modules, Streams and Functions: //! //! A CUDA context is akin to a process on the host - it contains all of the state for working with //! a device, all memory allocations, etc. Each context is associated with a single device. //! //! A Module is similar to a shared-object library - it is a piece of compiled code which exports //! functions and global values. Functions can be loaded from modules and launched on a device as //! one might load a function from a shared-object file and call it. Functions are also known as //! kernels and the two terms will be used interchangeably. //! //! A Stream is akin to a thread - asynchronous work such as kernel execution can be queued into a //! stream. Work within a single stream will execute sequentially in the order that it was //! submitted, and may interleave with work from other streams. //! //! ## Grids, Blocks and Threads: //! //! CUDA devices typically execute kernel functions on many threads in parallel. These threads can //! be grouped into thread blocks, which share an area of fast hardware memory known as shared //! memory. Thread blocks can be one-, two-, or three-dimensional, which is helpful when working //! with multi-dimensional data such as images. Thread blocks are then grouped into grids, which //! can also be one-, two-, or three-dimensional. //! //! CUDA devices often contain multiple separate processors. Each processor is capable of excuting //! many threads simultaneously, but they must be from the same thread block. Thus, it is important //! to ensure that the grid size is large enough to provide work for all processors. On the other //! hand, if the thread blocks are too small each processor will be under-utilized and the //! code will be unable to make effective use of shared memory. //! //! # Usage: //! //! Before using RustaCUDA, you must install the CUDA development libraries for your system. Version //! 8.0 or newer is required. You must also have a CUDA-capable GPU installed with the appropriate //! drivers. //! //! Add the following to your `Cargo.toml`: //! //! ```text //! [dependencies] //! rustacuda = "0.1" //! rustacuda_derive = "0.1" //! rustacuda_core = "0.1" //! ``` //! //! And this to your crate root: //! //! ```text //! #[macro_use] //! extern crate rustacuda; //! //! #[macro_use] //! extern crate rustacuda_derive; //! //! extern crate rustacuda_core; //! ``` //! //! Finally, set the `CUDA_LIBRARY_PATH` environment variable to the location of your CUDA libraries. //! For example, on Windows (MINGW): //! //! ```text //! export CUDA_LIBRARY_PATH="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\lib\x64" //! ``` //! //! # Examples //! //! ## Adding two numbers on the device: //! //! First, download the `resources/add.ptx` file from the RustaCUDA repository and place it in //! the resources directory for your application. //! //! ``` //! #[macro_use] //! extern crate rustacuda; //! extern crate rustacuda_core; //! //! use rustacuda::prelude::*; //! use rustacuda::memory::DeviceBox; //! use std::error::Error; //! use std::ffi::CString; //! //! fn main() -> Result<(), Box<dyn Error>> { //! // Initialize the CUDA API //! rustacuda::init(CudaFlags::empty())?; //! //! // Get the first device //! let device = Device::get_device(0)?; //! //! // Create a context associated to this device //! let context = Context::create_and_push( //! ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO, device)?; //! //! // Load the module containing the function we want to call //! let module_data = CString::new(include_str!("../resources/add.ptx"))?; //! let module = Module::load_from_string(&module_data)?; //! //! // Create a stream to submit work to //! let stream = Stream::new(StreamFlags::NON_BLOCKING, None)?; //! //! // Allocate space on the device and copy numbers to it. //! let mut x = DeviceBox::new(&10.0f32)?; //! let mut y = DeviceBox::new(&20.0f32)?; //! let mut result = DeviceBox::new(&0.0f32)?; //! //! // Launching kernels is unsafe since Rust can't enforce safety - think of kernel launches //! // as a foreign-function call. In this case, it is - this kernel is written in CUDA C. //! unsafe { //! // Launch the `sum` function with one block containing one thread on the given stream. //! launch!(module.sum<<<1, 1, 0, stream>>>( //! x.as_device_ptr(), //! y.as_device_ptr(), //! result.as_device_ptr(), //! 1 // Length //! ))?; //! } //! //! // The kernel launch is asynchronous, so we wait for the kernel to finish executing //! stream.synchronize()?; //! //! // Copy the result back to the host //! let mut result_host = 0.0f32; //! result.copy_to(&mut result_host)?; //! //! println!("Sum is {}", result_host); //! # assert_eq!(30, result_host as u32); //! //! Ok(()) //! } //! ``` #![warn( missing_docs, missing_debug_implementations, unused_import_braces, unused_results, unused_qualifications )] // TODO: Add the missing_doc_code_examples warning, switch these to Deny later. // Allow clippy lints #![allow(unknown_lints, clippy::new_ret_no_self)] #[macro_use] extern crate bitflags; extern crate cuda_sys; extern crate rustacuda_core; #[allow(unused_imports, clippy::useless_attribute)] #[macro_use] extern crate rustacuda_derive; #[doc(hidden)] pub use rustacuda_derive::*; pub mod context; pub mod device; pub mod error; pub mod event; pub mod function; pub mod memory; pub mod module; pub mod prelude; pub mod stream; mod derive_compile_fail; use crate::context::{Context, ContextFlags}; use crate::device::Device; use crate::error::{CudaResult, ToResult}; use cuda_sys::cuda::{cuDriverGetVersion, cuInit}; bitflags! { /// Bit flags for initializing the CUDA driver. Currently, no flags are defined, /// so `CudaFlags::empty()` is the only valid value. pub struct CudaFlags: u32 { // We need to give bitflags at least one constant. #[doc(hidden)] const _ZERO = 0; } } /// Initialize the CUDA Driver API. /// /// This must be called before any other RustaCUDA (or CUDA) function is called. Typically, this /// should be at the start of your program. All other functions will fail unless the API is /// initialized first. /// /// The `flags` parameter is used to configure the CUDA API. Currently no flags are defined, so /// it must be `CudaFlags::empty()`. pub fn init(flags: CudaFlags) -> CudaResult<()> { unsafe { cuInit(flags.bits()).to_result() } } /// Shortcut for initializing the CUDA Driver API and creating a CUDA context with default settings /// for the first device. /// /// This is useful for testing or just setting up a basic CUDA context quickly. Users with more /// complex needs (multiple devices, custom flags, etc.) should use `init` and create their own /// context. pub fn quick_init() -> CudaResult<Context> { init(CudaFlags::empty())?; let device = Device::get_device(0)?; Context::create_and_push(ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO, device) } /// Struct representing the CUDA API version number. #[derive(Debug, Hash, Eq, PartialEq, Ord, PartialOrd, Copy, Clone)] pub struct CudaApiVersion { version: i32, } impl CudaApiVersion { /// Returns the latest CUDA version supported by the CUDA driver. pub fn get() -> CudaResult<CudaApiVersion> { unsafe { let mut version: i32 = 0; cuDriverGetVersion(&mut version as *mut i32).to_result()?; Ok(CudaApiVersion { version }) } } /// Return the major version number - eg. the 9 in version 9.2 #[inline] pub fn major(self) -> i32 { self.version / 1000 } /// Return the minor version number - eg. the 2 in version 9.2 #[inline] pub fn minor(self) -> i32 { (self.version % 1000) / 10 } } #[cfg(test)] mod test { use super::*; #[test] fn test_api_version() { let version = CudaApiVersion { version: 9020 }; assert_eq!(version.major(), 9); assert_eq!(version.minor(), 2); } #[test] fn test_init_twice() { init(CudaFlags::empty()).unwrap(); init(CudaFlags::empty()).unwrap(); } } // Fake module with a private trait used to prevent outside code from implementing certain traits. pub(crate) mod private { pub trait Sealed {} }