1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
//! Functions and types for working with CUDA kernels. use crate::context::{CacheConfig, SharedMemoryConfig}; use crate::error::{CudaResult, ToResult}; use crate::module::Module; use cuda_sys::cuda::{self, CUfunction}; use std::marker::PhantomData; use std::mem::transmute; /// Dimensions of a grid, or the number of thread blocks in a kernel launch. /// /// Each component of a `GridSize` must be at least 1. The maximum size depends on your device's /// compute capability, but maximums of `x = (2^31)-1, y = 65535, z = 65535` are common. Launching /// a kernel with a grid size greater than these limits will cause an error. #[derive(Debug, Clone, PartialEq, Eq)] pub struct GridSize { /// Width of grid in blocks pub x: u32, /// Height of grid in blocks pub y: u32, /// Depth of grid in blocks pub z: u32, } impl GridSize { /// Create a one-dimensional grid of `x` blocks #[inline] pub fn x(x: u32) -> GridSize { GridSize { x, y: 1, z: 1 } } /// Create a two-dimensional grid of `x * y` blocks #[inline] pub fn xy(x: u32, y: u32) -> GridSize { GridSize { x, y, z: 1 } } /// Create a three-dimensional grid of `x * y * z` blocks #[inline] pub fn xyz(x: u32, y: u32, z: u32) -> GridSize { GridSize { x, y, z } } } impl From<u32> for GridSize { fn from(x: u32) -> GridSize { GridSize::x(x) } } impl From<(u32, u32)> for GridSize { fn from((x, y): (u32, u32)) -> GridSize { GridSize::xy(x, y) } } impl From<(u32, u32, u32)> for GridSize { fn from((x, y, z): (u32, u32, u32)) -> GridSize { GridSize::xyz(x, y, z) } } impl<'a> From<&'a GridSize> for GridSize { fn from(other: &GridSize) -> GridSize { other.clone() } } /// Dimensions of a thread block, or the number of threads in a block. /// /// Each component of a `BlockSize` must be at least 1. The maximum size depends on your device's /// compute capability, but maximums of `x = 1024, y = 1024, z = 64` are common. In addition, the /// limit on total number of threads in a block (`x * y * z`) is also defined by the compute /// capability, typically 1024. Launching a kernel with a block size greater than these limits will /// cause an error. #[derive(Debug, Clone, PartialEq, Eq)] pub struct BlockSize { /// X dimension of each thread block pub x: u32, /// Y dimension of each thread block pub y: u32, /// Z dimension of each thread block pub z: u32, } impl BlockSize { /// Create a one-dimensional block of `x` threads #[inline] pub fn x(x: u32) -> BlockSize { BlockSize { x, y: 1, z: 1 } } /// Create a two-dimensional block of `x * y` threads #[inline] pub fn xy(x: u32, y: u32) -> BlockSize { BlockSize { x, y, z: 1 } } /// Create a three-dimensional block of `x * y * z` threads #[inline] pub fn xyz(x: u32, y: u32, z: u32) -> BlockSize { BlockSize { x, y, z } } } impl From<u32> for BlockSize { fn from(x: u32) -> BlockSize { BlockSize::x(x) } } impl From<(u32, u32)> for BlockSize { fn from((x, y): (u32, u32)) -> BlockSize { BlockSize::xy(x, y) } } impl From<(u32, u32, u32)> for BlockSize { fn from((x, y, z): (u32, u32, u32)) -> BlockSize { BlockSize::xyz(x, y, z) } } impl<'a> From<&'a BlockSize> for BlockSize { fn from(other: &BlockSize) -> BlockSize { other.clone() } } /// All supported function attributes for [Function::get_attribute](struct.Function.html#method.get_attribute) #[repr(u32)] #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum FunctionAttribute { /// The maximum number of threads per block, beyond which a launch would fail. This depends on /// both the function and the device. MaxThreadsPerBlock = 0, /// The size in bytes of the statically-allocated shared memory required by this function. SharedMemorySizeBytes = 1, /// The size in bytes of the constant memory required by this function ConstSizeBytes = 2, /// The size in bytes of local memory used by each thread of this function LocalSizeBytes = 3, /// The number of registers used by each thread of this function NumRegisters = 4, /// The PTX virtual architecture version for which the function was compiled. This value is the /// major PTX version * 10 + the minor PTX version, so version 1.3 would return the value 13. PtxVersion = 5, /// The binary architecture version for which the function was compiled. Encoded the same way as /// PtxVersion. BinaryVersion = 6, /// The attribute to indicate whether the function has been compiled with user specified /// option "-Xptxas --dlcm=ca" set. CacheModeCa = 7, #[doc(hidden)] __Nonexhaustive = 8, } /// Handle to a global kernel function. #[derive(Debug)] pub struct Function<'a> { inner: CUfunction, module: PhantomData<&'a Module>, } impl<'a> Function<'a> { pub(crate) fn new(inner: CUfunction, _module: &Module) -> Function { Function { inner, module: PhantomData, } } /// Returns information about a function. /// /// # Examples /// /// ``` /// # use rustacuda::*; /// # use std::error::Error; /// # fn main() -> Result<(), Box<dyn Error>> { /// # let _ctx = quick_init()?; /// # use rustacuda::module::Module; /// # use std::ffi::CString; /// # let ptx = CString::new(include_str!("../resources/add.ptx"))?; /// # let module = Module::load_from_string(&ptx)?; /// # let name = CString::new("sum")?; /// use rustacuda::function::FunctionAttribute; /// let function = module.get_function(&name)?; /// let shared_memory = function.get_attribute(FunctionAttribute::SharedMemorySizeBytes)?; /// println!("This function uses {} bytes of shared memory", shared_memory); /// # Ok(()) /// # } /// ``` pub fn get_attribute(&self, attr: FunctionAttribute) -> CudaResult<i32> { unsafe { let mut val = 0i32; cuda::cuFuncGetAttribute( &mut val as *mut i32, // This should be safe, as the repr and values of FunctionAttribute should match. ::std::mem::transmute(attr), self.inner, ) .to_result()?; Ok(val) } } /// Sets the preferred cache configuration for this function. /// /// On devices where L1 cache and shared memory use the same hardware resources, this sets the /// preferred cache configuration for this function. This is only a preference. The /// driver will use the requested configuration if possible, but is free to choose a different /// configuration if required to execute the function. This setting will override the /// context-wide setting. /// /// This setting does nothing on devices where the size of the L1 cache and shared memory are /// fixed. /// /// # Example /// /// ``` /// # use rustacuda::*; /// # use std::error::Error; /// # fn main() -> Result<(), Box<dyn Error>> { /// # let _ctx = quick_init()?; /// # use rustacuda::module::Module; /// # use std::ffi::CString; /// # let ptx = CString::new(include_str!("../resources/add.ptx"))?; /// # let module = Module::load_from_string(&ptx)?; /// # let name = CString::new("sum")?; /// use rustacuda::context::CacheConfig; /// let mut function = module.get_function(&name)?; /// function.set_cache_config(CacheConfig::PreferL1)?; /// # Ok(()) /// # } /// ``` pub fn set_cache_config(&mut self, config: CacheConfig) -> CudaResult<()> { unsafe { cuda::cuFuncSetCacheConfig(self.inner, transmute(config)).to_result() } } /// Sets the preferred shared memory configuration for this function. /// /// On devices with configurable shared memory banks, this function will set this function's /// shared memory bank size which is used for subsequent launches of this function. If not set, /// the context-wide setting will be used instead. /// /// # Example /// /// ``` /// # use rustacuda::*; /// # use std::error::Error; /// # fn main() -> Result<(), Box<dyn Error>> { /// # let _ctx = quick_init()?; /// # use rustacuda::module::Module; /// # use std::ffi::CString; /// # let ptx = CString::new(include_str!("../resources/add.ptx"))?; /// # let module = Module::load_from_string(&ptx)?; /// # let name = CString::new("sum")?; /// use rustacuda::context::SharedMemoryConfig; /// let mut function = module.get_function(&name)?; /// function.set_shared_memory_config(SharedMemoryConfig::EightByteBankSize)?; /// # Ok(()) /// # } /// ``` pub fn set_shared_memory_config(&mut self, cfg: SharedMemoryConfig) -> CudaResult<()> { unsafe { cuda::cuFuncSetSharedMemConfig(self.inner, transmute(cfg)).to_result() } } pub(crate) fn to_inner(&self) -> CUfunction { self.inner } } /// Launch a kernel function asynchronously. /// /// # Syntax: /// /// The format of this macro is designed to resemble the triple-chevron syntax used to launch /// kernels in CUDA C. There are two forms available: /// /// ```ignore /// let result = launch!(module.function_name<<<grid, block, shared_memory_size, stream>>>(parameter1, parameter2...)); /// ``` /// /// This will load a kernel called `function_name` from the module `module` and launch it with /// the given grid/block size on the given stream. Unlike in CUDA C, the shared memory size and /// stream parameters are not optional. The shared memory size is a number of bytes per thread for /// dynamic shared memory (Note that this uses `extern __shared__ int x[]` in CUDA C, not the /// fixed-length arrays created by `__shared__ int x[64]`. This will usually be zero.). /// `stream` must be the name of a [`Stream`](stream/struct.Stream.html) value. /// `grid` can be any value which implements [`Into<GridSize>`](function/struct.GridSize.html) (such as /// `u32` values, tuples of up to three `u32` values, and GridSize structures) and likewise `block` /// can be any value that implements [`Into<BlockSize>`](function/struct.BlockSize.html). /// /// NOTE: due to some limitations of Rust's macro system, `module` and `stream` must be local /// variable names. Paths or function calls will not work. /// /// The second form is similar: /// /// ```ignore /// let result = launch!(function<<<grid, block, shared_memory_size, stream>>>(parameter1, parameter2...)); /// ``` /// /// In this variant, the `function` parameter must be a variable. Use this form to avoid looking up /// the kernel function for each call. /// /// # Safety /// /// Launching kernels must be done in an `unsafe` block. Calling a kernel is similar to calling a /// foreign-language function, as the kernel itself could be written in C or unsafe Rust. The kernel /// must accept the same number and type of parameters that are passed to the `launch!` macro. The /// kernel must not write invalid data (for example, invalid enums) into areas of memory that can /// be copied back to the host. The programmer must ensure that the host does not access device or /// unified memory that the kernel could write to until after calling `stream.synchronize()`. /// /// # Examples /// /// ``` /// # #[macro_use] /// # use rustacuda::*; /// # use std::error::Error; /// use rustacuda::memory::*; /// use rustacuda::module::Module; /// use rustacuda::stream::*; /// use std::ffi::CString; /// /// # fn main() -> Result<(), Box<dyn Error>> { /// /// // Set up the context, load the module, and create a stream to run kernels in. /// let _ctx = rustacuda::quick_init()?; /// let ptx = CString::new(include_str!("../resources/add.ptx"))?; /// let module = Module::load_from_string(&ptx)?; /// let stream = Stream::new(StreamFlags::NON_BLOCKING, None)?; /// /// // Create buffers for data /// let mut in_x = DeviceBuffer::from_slice(&[1.0f32; 10])?; /// let mut in_y = DeviceBuffer::from_slice(&[2.0f32; 10])?; /// let mut out_1 = DeviceBuffer::from_slice(&[0.0f32; 10])?; /// let mut out_2 = DeviceBuffer::from_slice(&[0.0f32; 10])?; /// /// // This kernel adds each element in `in_x` and `in_y` and writes the result into `out`. /// unsafe { /// // Launch the kernel with one block of one thread, no dynamic shared memory on `stream`. /// let result = launch!(module.sum<<<1, 1, 0, stream>>>( /// in_x.as_device_ptr(), /// in_y.as_device_ptr(), /// out_1.as_device_ptr(), /// out_1.len() /// )); /// // `launch!` returns an error in case anything went wrong with the launch itself, but /// // kernel launches are asynchronous so errors caused by the kernel (eg. invalid memory /// // access) will show up later at some other CUDA API call (probably at `synchronize()` /// // below). /// result?; /// /// // Launch the kernel again using the `function` form: /// let function_name = CString::new("sum")?; /// let sum = module.get_function(&function_name)?; /// // Launch with 1x1x1 (1) blocks of 10x1x1 (10) threads, to show that you can use tuples to /// // configure grid and block size. /// let result = launch!(sum<<<(1, 1, 1), (10, 1, 1), 0, stream>>>( /// in_x.as_device_ptr(), /// in_y.as_device_ptr(), /// out_2.as_device_ptr(), /// out_2.len() /// )); /// result?; /// } /// /// // Kernel launches are asynchronous, so we wait for the kernels to finish executing. /// stream.synchronize()?; /// /// // Copy the results back to host memory /// let mut out_host = [0.0f32; 20]; /// out_1.copy_to(&mut out_host[0..10])?; /// out_2.copy_to(&mut out_host[10..20])?; /// /// for x in out_host.iter() { /// assert_eq!(3.0, *x); /// } /// # Ok(()) /// # } /// ``` /// #[macro_export] macro_rules! launch { ($module:ident . $function:ident <<<$grid:expr, $block:expr, $shared:expr, $stream:ident>>>( $( $arg:expr),* )) => { { let name = std::ffi::CString::new(stringify!($function)).unwrap(); let function = $module.get_function(&name); match function { Ok(f) => launch!(f<<<$grid, $block, $shared, $stream>>>( $($arg),* ) ), Err(e) => Err(e), } } }; ($function:ident <<<$grid:expr, $block:expr, $shared:expr, $stream:ident>>>( $( $arg:expr),* )) => { { fn assert_impl_devicecopy<T: $crate::memory::DeviceCopy>(_val: T) {}; if false { $( assert_impl_devicecopy($arg); )* }; $stream.launch(&$function, $grid, $block, $shared, &[ $( &$arg as *const _ as *mut ::std::ffi::c_void, )* ] ) } }; } #[cfg(test)] mod test { use super::*; use crate::memory::CopyDestination; use crate::memory::DeviceBuffer; use crate::quick_init; use crate::stream::{Stream, StreamFlags}; use std::error::Error; use std::ffi::CString; #[test] fn test_launch() -> Result<(), Box<dyn Error>> { let _context = quick_init(); let ptx_text = CString::new(include_str!("../resources/add.ptx"))?; let module = Module::load_from_string(&ptx_text)?; unsafe { let mut in_x = DeviceBuffer::from_slice(&[2.0f32; 128])?; let mut in_y = DeviceBuffer::from_slice(&[1.0f32; 128])?; let mut out: DeviceBuffer<f32> = DeviceBuffer::uninitialized(128)?; let stream = Stream::new(StreamFlags::NON_BLOCKING, None)?; launch!(module.sum<<<1, 128, 0, stream>>>(in_x.as_device_ptr(), in_y.as_device_ptr(), out.as_device_ptr(), out.len()))?; stream.synchronize()?; let mut out_host = [0f32; 128]; out.copy_to(&mut out_host[..])?; for x in out_host.iter() { assert_eq!(3, *x as u32); } } Ok(()) } }